
Lecture 6
14 September 2020

Admin Matters
Unit 13: Call Stack
Unit 14: Pointers
Unit 15: Arrays
Unit 16: Strings

1

Assignment 2

• Due tomorrow 2359 hrs

• Graded on correctness
§ Syntax
§ Practices
§ Approach
§ Logic

• Also graded on style and efficiency

2

Assignment 2

• Make sure that your submissions compiles cleanly without
errors or warnings
§ 0 if cannot compile
§ -1 per warning

• Marks will be deducted if you do not demonstrate a full
understanding of what has been taught

3

WARNING

• Plagiarism will not be tolerated
§ You may discuss how to solve assignment questions
§ But code should be written individually

• Consequences
§ 0 marks for the assignment
§ Disciplinary action

4

CS1010 Survey

• Module Evaluation Survey 1
§ Please help us to improve your learning with constructive feedback!

• Complete by this Thursday 2359 hrs

5

Upcoming Releases

• Exercise 3: Tuesday

• Practical Examination 1 from AY18/19: Tuesday

• Assignment 3: Thursday
§ Same grading criteria as Assignment 2

6

Catch-up II Session

• Postponed
§ New Date: 21 September, Monday
§ Time: 1000 – 1200 hrs
§ Venue: Online – same Zoom link (ref. Piazza)

§ Previously: Saturday, 19 September

7

Reminders

• Midterm: 28 September 2020, Monday

• Practical Examination 1: 3 October 2020, Saturday

• Important note:
§ Pay attention to examination regulations
§ Disciplinary action will be taken against violators

8

Homework for Tutorial/Lab 4

• Problem Sets 12 and 13

• Programming Exercises

9

Call Stack

10

int main()
{

long x = 1;
long y;

}

11

int main()
{

long x = 1;
long y;

}

Call Stack

main

a stack frame

x 1

y

12

long add(long a, long b)
{

long sum;
sum = a + b;
return sum;

}

int main()
{

long x = 1;
long y;
y = add(x, 10);

}

13

long add(long a, long b)
{

long sum;
sum = a + b;
return sum;

}

int main()
{

long x = 1;
long y;
y = add(x, 10);

}

Call Stack

main

x 1

y

add

a 1

b 10

sum 11

11

14

long add(long a, long b)
{

long sum;
sum = a + b;
a = 42;
return sum;

}

int main()
{

long x = 1;
long y;
y = add(x, 10);

}

Call Stack

main

x 1

y

add

a 42

b 10

sum 11

Describe the call stack as
this instruction is executed

11

15

void add(long a, long b, long sum)

{

sum = a + b;

}

int main()

{
long x = 1;

long sum;

add(x, 10, sum);

}

Call Stack

main

x 1

sum

Describe the call stack right
after this instruction is executed

add

a 1

b 10

sum ???11

The computation to
determine the sum
was not assigned!

16

Pointers

17

“Address of” operator: &

• The value for every variable is stored at some location in
memory

• Given a variable x:
§ x gives us the value
§ &x gives us the address in memory where the value for x is stored
§ &x has type:

• “ address of T ”
• where T is the type of x

18

1008 x 10

long x = 10;

&x
address of long

“Pointer” type: <type> *

• We can define a variable that stores the memory address of a
specific C type value
§ For example:

long x = 10;
long * ptr = &x;

19

1008 x 10

1008ptr

long *

“Pointer” operator: *

• The value stored at the memory address of a pointer, may be accessed by
using the * operator

• Given a pointer ptr:
§ ptr gives us a memory address
§ *ptr allows us access the value stored at that memory address

§ For example:
§ long x = 10;
§ long * ptr = &x;
§ *ptr = 20;

20

1008 x 10

1008ptr

20

#include "cs1010.h"

void add(long a, long b, long sum)
{

sum = a + b;
cs1010_println_long((long)&sum);

}

int main()
{

long x = 1;
long sum;
add(x, 10, sum);
cs1010_println_long((long)&sum);

}

21

int main()

{

double * ptr;

*ptr = 1.0;

}

22

int main()

{

double c;

double * ptr;

ptr = &c;

*ptr = 1.0;

}

23

Rules on pointers

• A T pointer, where T is some C type, can only point to a variable of
type T

• Example:
double pi = 3.1415926;
long radius = 5;
double *addr;
addr = π // ok
addr = &radius; // not ok (radius is a long)

24

Rules on pointers

• We cannot change the address of a variable, but we can
change what a pointer is pointing at

• Example:
long x = 1;
long y = 2;
&x = &y; // invalid

25

Rules on pointers

• We can perform add and subtract on pointers
§ This changes the address by 1 unit, where this unit

corresponds to the length (i.e., number of bytes) of the type

§Example:
long x = 1;

long * ptr = &x; // assume &x is 2404

ptr += 1; // ptr now points at?

26

2412

Arrays

27

28

Array is a compound data
type that stores multiple
values of the same type

29

Example:
long a[4];

This statement declares an array of 4 long values

Arrays contiguous sequence of memory

30

Example:
long a[10];// declare
a[0] = 8; // write 1st element
a[4] = 100;// write 5th element

a[i] accesses the i+1th element of the array

Recall that i starts at 0

31

Array decay
• Consider long a[4];

• a decays to &a[0]

notice that the address of any
element is simply &a[i], or
simply the starting address of
the array + (i * unit)

32

Arrays as a parameters

// function declaration
long max(long list[], long len) {

:
}

:
int main() {

long marks[10]; // declaration - empty []
max(marks, 10); // invoking max; marks as parameter

&marks[0]

33

Using an array as a lookup table

// Exercise 1: Days
long days(long month)
{
long days_in_month[12] = {31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31};
long days_since = 0;
for (long i = 0; i < month - 1; i += 1) {
days_since += days_in_month[i];

}
return days_since;

}

34

Using an array as a list

long max(long list[], long length)
{
long max_so_far = list[0];
for (long i = 1; i != length; i += 1) {
if (list[i] > max_so_far) {
max_so_far = list[i];

}
}
return max_so_far;

}

35

Array issues: comparison & assignment

long a[2] = {0, 1};
long b[2] = {0, 1};
if (a == b) { // always false
:

}
b = a; // not possible

36

Array issues: index out of bounds

int main()
{
long a[10];
for (long i = 0; i <= 10; i += 1) {
a[i] = 1;

}
}

Other details about arrays in C

• Including:
§ array initialisation
§ avoiding the use of variable-length arrays
§ determining the size of the array
§ how to read arrays with CS1010 I/O library

37

Strings

38

Strings in C

• Just an array of char values

• Always terminated by a value 0 (aka null or \0)

39

Special Characters

• \0: null character
• \n: new line
• \t: tab

• e.g.,
cs1010_println_string("group\tname\nC03\tJohn\n");

40

String Literals

• Unmodifiable string between two double-quotes.
• Stored not on the stack but in a read-only region of memory.

41

42

char *str1 = "hello!"
str1[0] = 'j'; // error

str1 is a pointer on the stack, pointing to a read-only memory.

43

Common String Bugs I

char str2[7] = "hello!" // char array; not pointer
str2[0] = 'j’; // ok

str2[7] is an array and contains a copy of the string
"hello" on the stack.

44

Common String Bugs II

char src[6] = "hello!"
char dst[6];
for (long i = 0; i < 6; i += 1) {

dst[i] = src[i];
}

45

Common String Bugs II|

char src[6] = "hello!"
char dst[6];
strcpy(dst, src);

